Gated Content 🤟

Yay!!

No thanks

Initially, most QDs used in commercial applications (ie in lighting and TV displays), were based on cadmium selenide (CdSe) because of the efficiency with which the material converts colours. However, cadmium is known to be toxic. It is one of six substances regulated by the European Union’s Restrictions on Hazardous Substances (RoHS), which came into force in July 2011, though displays are still subject to an exemption from this directive.

Cadmium-free alternatives now widely used

Various families of materials have been developed as cadmium-free alternatives including copper indium sulphide (UbiQD), indium phosphide inside a zinc sulphide shell (Nanosys/NN Crystal) and lead selenide (Quantum Solutions). Nanoco’s patented CFQD (cadmium-free QD) technology is based on an alloy of indium and other elements. Indium phosphide is the most widely deployed cadmium-free material as it is deployed in Samsung’s QLED range of TVs and the Vizio P Series and Hisense U9A and NU9700 ranges. While there are toxicity concerns surrounding indium phosphide QDs as well, the material is not on the RoHS restricted list.

Perovskites are a promising alternative

More recently the performance of perovskite QDs (Avantama/Quantum Solutions) has improved to such an extent that the material has been successfully qualified by a TV major for use in displays. Perovskites contain lead, which is also on the RoHS restricted list, but the default limit is at a level where the green-only QD film-based perovskite technologies being offered are likely to contain lead at permitted concentrations. This may not be the case for future applications of perovskites such as QD colour filters or colour converters used in QD-OLED displays.

First QDs based on toxic heavy metals

Initially, most QDs used in commercial applications (ie in lighting and TV displays), were based on cadmium selenide (CdSe) because of the efficiency with which the material converts colours. However, cadmium is known to be toxic. It is one of six substances regulated by the European Union’s Restrictions on Hazardous Substances (RoHS), which came into force in July 2011, though displays are still subject to an exemption from this directive.

Cadmium-free alternatives now widely used

Various families of materials have been developed as cadmium-free alternatives including copper indium sulphide (UbiQD), indium phosphide inside a zinc sulphide shell (Nanosys/NN Crystal) and lead selenide (Quantum Solutions). Nanoco’s patented CFQD (cadmium-free QD) technology is based on an alloy of indium and other elements. Indium phosphide is the most widely deployed cadmium-free material as it is deployed in Samsung’s QLED range of TVs and the Vizio P Series and Hisense U9A and NU9700 ranges. While there are toxicity concerns surrounding indium phosphide QDs as well, the material is not on the RoHS restricted list.

Perovskites are a promising alternative

More recently the performance of perovskite QDs (Avantama/Quantum Solutions) has improved to such an extent that the material has been successfully qualified by a TV major for use in displays. Perovskites contain lead, which is also on the RoHS restricted list, but the default limit is at a level where the green-only QD film-based perovskite technologies being offered are likely to contain lead at permitted concentrations. This may not be the case for future applications of perovskites such as QD colour filters or colour converters used in QD-OLED displays.

 

material has been successfully qualified by a TV major for use in displays. Perovskites contain lead, which is also on the RoHS restricted list, but the default limit is at a level where the green-only QD film-based perovskite technologies being offered are likely to contain lead at permitted concentrations. This may not be the case for future applications of perovskites such as QD colour filters or colour converters used in QD-OLED displays.

 

material has been successfully qualified by a TV major for use in displays. Perovskites contain lead, which is also on the RoHS restricted list, but the default limit is at a level where the green-only QD film-based perovskite technologies being offered are likely to contain lead at permitted concentrations. This may not be the case for future applications of perovskites such as QD colour filters or colour converters used in QD-OLED displays.

 

material has been successfully qualified by a TV major for use in displays. Perovskites contain lead, which is also on the RoHS restricted list, but the default limit is at a level where the green-only QD film-based perovskite technologies being offered are likely to contain lead at permitted concentrations. This may not be the case for future applications of perovskites such as QD colour filters or colour converters used in QD-OLED displays.

ESGTI